DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4086B gates 4-wide 2-input AND-OR-invert gate

File under Integrated Circuits, IC04

PHILIPS

4-wide 2-input AND-OR-invert gate

DESCRIPTION

The HEF4086B is a 4-wide 2-input AND-OR-invert (AOI) gate with two additional inputs (I_{8} or \bar{I}_{9}) which can be used as either expander or inhibit inputs by connecting them to any standard LOCMOS output. A HIGH on I_{8} or a LOW on \bar{I}_{9} forces the output (O) LOW independent of the other eight inputs (I_{0} to I_{7}). The output (O) is fully buffered for highest noise immunity and pattern insensitivity of output impedance.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4086BP(N): 14-lead DIL; plastic (SOT27-1)
HEF4086BD(F): 14-lead DIL; ceramic (cerdip) (SOT73)
HEF4086BT(D): 14-lead SO; plastic (SOT108-1)
(): Package Designator North America

PINNING

I_{0} to I_{8}	gate inputs
I_{9}	gate input (active LOW)
O	output (active LOW)

FAMILY DATA, IDD LIMITS category GATES
See Family Specifications

Fig. 3 Logic diagram.

LOGIC EQUATION

$$
O=\overline{I_{0} \cdot I_{1}+I_{2} \cdot I_{3}+I_{4} \cdot I_{5}+I_{6} \cdot I_{7}+I_{8}+I_{9}}
$$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays I_{0} to $\mathrm{I}_{7} \rightarrow \mathrm{O}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 90 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 180 \\ 65 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \hline 80 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 155 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} & \hline 53 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{I}_{8} \rightarrow \mathrm{O}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 70 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 140 \\ 55 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} & 43 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 55 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 115 \\ 40 \\ 25 \\ \hline \end{array}$	ns ns ns	$\begin{array}{r} 28 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 7 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
$\overline{\mathrm{I}}_{9} \rightarrow \mathrm{O}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 55 \\ & 20 \\ & 15 \end{aligned}$	$\begin{array}{r} \hline 105 \\ 45 \\ 30 \end{array}$	ns ns ns	$\begin{aligned} \hline 28 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 7 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 45 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	ns ns ns	$\begin{array}{r} 18 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 4 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 2 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {LLH }}$	$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$525 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$2600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$7300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

4-wide 2-input AND-OR-invert gate

APPLICATION INFORMATION

Figure 4 shows two HEF4086B ICs connected to obtain an 8-wide 2-input AOI function.
The output $\left(\mathrm{O}_{A}\right)$ of the first IC is fed directly into the $\bar{l}_{9 B}$ gate input of the second IC. Similarly, any NAND gate output can be fed directly into the \bar{I}_{9} gate input to obtain a 5 -wide AOI function. In addition, any AND gate output can be fed directly into the I_{8} gate input with the same result.

Fig. 4 Two HEF4086B ICs connected as an 8-wide 2-input AOI gate.

Logic equation for Fig.4:

$$
O_{B}=\overline{I_{0 A} \cdot I_{1 A}+I_{2 A} \cdot I_{3 A}+I_{4 A} \cdot I_{5 A}+I_{6 A} \cdot I_{7 A}+I_{0 B} \cdot I_{1 B}+I_{2 B} \cdot I_{3 B}+I_{4 B} \cdot I_{5 B}+I_{6 B} \cdot I_{7 B}}
$$

